Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(4): 205, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492087

RESUMEN

A simple and cost-effective fabrication method of gold nanorods (AuNRs) nanoparticles hybridized with polyvinyl alcohol hydrogel (AuNR/PVA) for SERS substrate is described. The AuNR/PVA achieves the control of inter-particle nanogap by modulating the density of gold nanorods, and inter-particle nanogap by the spatial deformation of the hydrogel, and the reduction of the gap between the AuNRs deposited on hydrogel makes the SERS enhancement. In addition, the AuNR/PVA substrate maintains high SERS activity after more than 100 cycles of bending and storage in air for 30 days, and the substrate possesses high sensitivity and high reproducibility. Combining a flexible and transparent surface-enhanced Raman spectroscopy (SERS) substrate for in situ detection with a small portable Raman can be applied to scenarios such as environmental detection and hazardous materials detection. The substrate showed excellent SERS activity against malachite green (MG) and crystal violet (CV) with limits of detection of 1.18 × 10-13 M and 7.17 × 10-12 M, respectively. The usability of the proposed SERS substrate was demonstrated by detecting the above contaminants in aquatic water. This work not only utilizes a cost-effective method for mass production but also provides a reliable and convenient platform for the preparation of other noble metal flexible substrates.

2.
Int J Biol Macromol ; 262(Pt 1): 129941, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342254

RESUMEN

In response to the prevalent issue of thiram as a common pesticide residue on the surface of fruits and vegetables, our research team employed an acidic hydrated metal salt low co-fusion solvent to dissolve cellulose lysis slurry. Subsequently, a regenerated cellulose membrane (RCM) was successfully prepared via sol-gel method. Uniformly sized Ag nanoparticles (NPs) were deposited on RCM utilizing the continuous ion layer adsorption and reaction (SILAR) technique. The resulting Ag NPs/RCM flexible surface-enhanced Raman spectroscopy (SERS) substrates exhibited a minimum detection limit of 5 × 10-9 M for Rhodamine 6G (R6G), demonstrating good uniformity (RSD = 4.86 %) and reproducibility (RSD = 3.07 %). Moreover, the substrate displayed a remarkable sensitivity of 10-10 M toward thiram standard solution. Given its inherent flexibility, the substrate proves advantageous for the detection of three-dimensional environments such as fruit and vegetable surfaces, and its practicality has been confirmed in the detection of thiram residue on apples, tomatoes, pears, and other fruits and vegetables.


Asunto(s)
Nanopartículas del Metal , Tiram , Tiram/análisis , Verduras/química , Frutas/química , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Plata/química , Espectrometría Raman/métodos , Celulosa/análisis
3.
Mikrochim Acta ; 191(1): 41, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38112843

RESUMEN

A highly sensitive tumor necrosis factor α (TNF-α) detection method based on a surface-enhanced Raman scattering (SERS) magnetic patch sensor is reported. Magnetic beads (MNPs) and core shells were used as the capture matrix and signaling probe, respectively. For this purpose, antibodies were immobilized on the surface of magnetic beads, and then Au@4-MBN@Ag core-shell structures coupled with aptamers and TNF-α antigen were added sequentially to form a sandwich immune complex. Quantitative analysis was performed by monitoring changes in the characteristic SERS signal intensity of the Raman reporter molecule 4-MBN. The results showed that the limit of detection (LOD) of the proposed method was 4.37 × 10-15 mg·mL-1 with good linearity (R2 = 0.9918) over the concentration range 10-12 to 10-5 mg·mL-1. Excellent assay accuracy was also demonstrated, with recoveries in the range 102% to 114%. Since all reactions occur in solution and are separated by magnetic adsorption of magnetic beads, this SERS-based immunoassay technique solves the kinetic problems of limited diffusion and difficult separation on solid substrates. The method is therefore expected to be a good clinical tool for the diagnosis of the inflammatory biomarker THF-α and in vivo inflammation screening.


Asunto(s)
Aptámeros de Nucleótidos , Factor de Necrosis Tumoral alfa , Plata/química , Oro/química , Magnetismo , Aptámeros de Nucleótidos/química
4.
Mikrochim Acta ; 190(11): 447, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37864774

RESUMEN

Flexible silver substrates were made by in situ reduction of silver nanoparticles in bacterial cellulose membranes using the unique advantage of dopamine. Subsequently, we modified the substrate with 4-mercaptophenol (4-MP), a molecule capable of specifically recognizing ClO-, and its corresponding SERS signal changes with the concentration of hypochlorite, thus allowing the quantitative detection of ClO- content. The method showed a negative linear correlation (R2 = 0.9567) with the SERS intensity at 1077 cm-1 over the concentration range 0.5-100 µM, and the detection limit was 0.15 µM. The RSD of the SERS intensity at 1077 cm-1 under five batches was 4.2%, which proved the good reproducibility of P-BCM-Ag NP-MP. Finally, the P-BCM-Ag NPs were used for the detection of hypochlorite in cell contents, artificial urine, and clinical serum samples, utilizing spike experiments in all three environments. The recoveries were in the range 90-110% indicating the accuracy of the method for the detection of hypochlorite and validating the promising application of this assay for practical detection in intricate biological samples.


Asunto(s)
Celulosa , Nanopartículas del Metal , Dopamina , Ácido Hipocloroso , Plata/química , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Espectrometría Raman/métodos
5.
Colloids Surf B Biointerfaces ; 230: 113485, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37556884

RESUMEN

Oxidative stress is one of the factors that promote melanogenesis. Trivalent iron ions play a key role in regulating the iron-catalysed oxidative stress response. A novel SERS flexible membrane sensor based on tannic acid with good sensitivity and uniformity was prepared by green in situ reduction of gold nanoparticles on bacterial cellulose membrane(BCM)with a simple and highly selective method to detect Fe3+. Under alkaline conditions, Fe3+ is adsorbed on the BCM-TA@Au NPs flexible membrane by tannic acid (TA) through chelation, thus enabling the detection of Fe3+. Furthermore, this simple detection system has a wide linear detection range and high sensitivity to effortlessly evaluate Fe3+ at concentrations up to 10-7 M. More importantly, the proposed SERS flexible substrate performed well in determining Fe3+ concentrations in B16 melanocytes, providing new insights into the factors affecting the melanin synthesis pathway and providing a potential biomarker for melanoma treatment.


Asunto(s)
Nanopartículas del Metal , Oro , Hierro , Oxidación-Reducción , Taninos , Espectrometría Raman/métodos
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123142, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37454434

RESUMEN

Accurate and sensitive detection of carcinoembryonic antigen (CEA) is essential for the detection of various diseases in healthcare and the medical field. Currently, due to the high false negative rate of CEA assay in clinical setting and its use as a common indicator for early cancer screening, a novel CEA detection method with high sensitivity, increased specificity and the lower cost has become a clinical challenge. Here, a facile sandwich type immunosensor based on surface-enhanced Raman scattering (SERS) was presented including 4-mercaptobenzonitrile (4MBN) labeled gold core-silver shell nanoparticles (Au@4MBN@Ag NPs) as SERS tag and 4-mercaptophenylboronic acid (4-MPBA) functionalized two-dimensional (2D) silver nanoparticle film (Ag FM) as SERS capture substrate for CEA detection. A linearity of 10-9-10-14M was observed with high sensitivity and excellent selectivity for the detection of CEA. Additionally, the spiking experiment yielded 105.33-127.00% recovery with variation coefficients below 10% demonstrating high assay accuracy and precision. The immunosensor we proposed here is a promising approach to quantify CEA in liquid biopsy samples with high sensitivity, which could be further developed for early cancer screening.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Antígeno Carcinoembrionario , Inmunoensayo/métodos , Plata , Oro , Espectrometría Raman/métodos
7.
Crit Rev Anal Chem ; : 1-20, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37289486

RESUMEN

Magnetic molecularly imprinted polymers (MMIPs) are used as artificial antibody materials. MMIPs have attracted a great deal of interest because of their low cost, wide practicality, predetermination, stability and their ability to achieve rapid separation from complex sample environments by the action of external magnetic field. MMIPs can simulate the natural recognition of entities. They are widely used because of their great advantages in terms of high selectivity. In this review article, the preparation methods of Fe3O4 NPs and a detailed summary of the commonly used methods for amination modification of Fe3O4 NPs are introduced, preparation of Ag NPs of different sizes and Au NPs of various shapes and preparation methods of magnetic molecularly imprinted plasmonic SERS composite nanoparticles such as Fe3O4@Ag NPs, Fe3O4/Ag NPs, Fe3O4@Au NPs, Fe3O4/Au NPs, Fe3O4@Au/Ag NPs and Fe3O4@Ag@Au NPs are main summarized. In addition, preparation process and the current application of MMIPs prepared from magnetic molecularly imprinted plasmonic SERS composite nanoparticles incorporating different functional monomers in a nuclear-satellite structure are also presented. Finally, the existing challenges and future prospects of MMIPs in applications are discussed.

8.
Food Chem ; 427: 136692, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37364315

RESUMEN

Diarrheal shellfish toxins are considered one of the most lethal red tide algae toxins in the worldwide. In this work, we propose an Ag NPs-loaded bacterial cellulose membrane (BCM) surface-enhanced Raman scattering (SERS) sensor based on an aptamer (Apt) for the ultrasensitive detection of dinophysistoxin (DTX-1), a type of diarrheal shellfish toxin. During drying, Ag NPs can be further densified on "gel-like" BCM to form high-density SERS "hot spots". We developed the "Apt-SH@Ag NPs@BCM" SERS sensor and used the competition of DTX-1 and complementary base (Cob) in the process of base complementary pairing to achieve SERS detection of DTX-1, with a minimum detection limit of 9.5 × 10-10 mol/L. Sample assays showed DTX-1 recovery rates ranging from 95.8% and 108.2% and the detection results were comparable to those obtained by LC-MS. Therefore, this work holds great potential for detecting of toxic substances in shellfish products, especially for the oyster (portuguese oyster) and mussel (blue mussel).


Asunto(s)
Celulosa , Nanopartículas del Metal , Humanos , Plata/química , Nanopartículas del Metal/química , Toxinas Marinas/toxicidad , Mariscos/análisis , Diarrea , Espectrometría Raman/métodos
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122631, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037174

RESUMEN

Abnormal uric acid (UA) content in body fluids can fully reflect the status of metabolism and immunity in the body. We have developed a simple, efficient and label-free surface enhanced Raman scattering (SERS) method for UA detection. Briefly, p-aminothiophenol (p-ATP) was used as the internal standard molecule and linking molecule to prepare a glass/p-ATP/Ag NPs SERS substrate. The Raman characteristic peak of p-ATP at 1076 cm-1 can be used as an internal standard molecule to correct the signal fluctuation of UA detection. The results show that the SERS method owns a linear response with a ranging from 5 × 10-6 to 10-3 M of UA characteristic peak of both 693 cm-1 and 493 cm-1 with a determination coefficient (R2) of 0.9878 and 0.9649, respectively. Additionally, the SERS sensor has been further used for the analysis of UA in sweat and good recoveries were obtained for the sensing of sweat. We believe that the developed SERS substrate has potential for applications in healthcare monitoring.


Asunto(s)
Nanopartículas del Metal , Sudor , Ácido Úrico , Nanopartículas del Metal/química , Plata/química , Espectrometría Raman/métodos , Adenosina Trifosfato
11.
Mikrochim Acta ; 190(3): 100, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36821003

RESUMEN

A ratiometric nanoensemble-functionalized Surface-Enhanced Raman Spectroscopy (SERS) chip is proposed and an ultrasensitive "sandwich" structure introduced for the detection of 5-HT to achieve early diagnosis of colon cancer. The SERS-based chip contains core-shell SERS active substrates coded by different Raman tags with Raman-silent region peaks (Au@EBP@Au NR arrays and Au@MBN@Ag NPs) and then identify-function molecule modification to construct the "sandwich" structure (Au@EBP@Au NR arrays/5-HT/Au@MBN@Ag NPs). Au@EBP@Au NR arrays showed excellent SERS performance, including good uniformity with an RSD of 5.53% and an enhancement factor (EF) of 2.13 × 107. The intensity ratio of the peaks in the Raman silent region was proportional to the concentration of 5-HT in the range 5 × 10-7-1 × 10-3 M, with a detection limit (LOD) of 4.9 × 10-9 M. Excellent assay accuracy was also demonstrated, with recoveries in the range 96.80% to 104.96%. Finally, we found that 5-HT expression levels in normal human sera were much lower than those in colon cancer patients by using a SERS-based chip for determination of the concentration of 5-HT in clinical colon cancer serum. This result suggested that the proposed approach has potential for detecting 5-HT by ratiometric SERS-based chips for early diagnosis of colon cancer.


Asunto(s)
Nanopartículas del Metal , Serotonina , Humanos , Nanopartículas del Metal/química , Oro/química , Plata/química , Espectrometría Raman/métodos
12.
Anal Bioanal Chem ; 415(9): 1699-1707, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36781448

RESUMEN

Liquid biopsies have significance for early colon cancer screening and improving patient survival. Recently, several researchers have applied surface-enhanced Raman spectroscopy (SERS) for the label-free and non-invasive detection of serum. Most of these studies performed the assay using a mixture of noble metal nanoparticles (NMNPs) with serum. However, SERS analysis of serum remains a challenge in terms of reproducibility and stability, as NMNPs tend to aggregate when mixed with serum, resulting in a non-uniform distribution of hot spots. Here, we report on the non-invasive identification of colon cancer (CC) using an internal standard (IS)-calibrated label-free serum SERS assay in combination with machine learning. Serum SERS spectra of 50 CC patients and 50 health volunteers have been obtained using silver nanoparticle (Ag NP) colloid and mercaptopropionic acid-modified Ag NPs (Ag NPs-MPA) as the SERS substrates. Decision tree (DT), random forest (RF), and principal component and linear discriminant analysis (PCA-LDA) algorithms were utilized to establish the diagnosis model for SERS spectra data classifying. The results show that the RF model provides a high diagnostic accuracy compared to PCA-LDA. Following calibration with IS molecules, high diagnostic accuracy of over 90% and 100% specificity can be achieved with DT, RF, and PCA-LDA algorithms to differentiate between cancer and normal groups. The results from this exploratory work demonstrate that serum SERS detection combined with multivariate statistical methods and IS calibration has great potential for the non-invasive and label-free detection of CC.


Asunto(s)
Neoplasias del Colon , Nanopartículas del Metal , Humanos , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Calibración , Plata/química , Espectrometría Raman/métodos , Neoplasias del Colon/diagnóstico , Análisis de Componente Principal
13.
Food Chem ; 409: 135363, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36592598

RESUMEN

As a widely used industrial additive of plastic products, phthalate ester (PAE) plasticizers can easily migrate into food, threatening human health. In this work, we proposed a rapid, precise, and reliable method to detect PAE plasticizers in edible oils by using surface-enhanced Raman spectroscopy (SERS) technology. A two-dimensional (2D) silver plate synergizing with a nanosilver sol was prepared as a substrate for SERS to detect potassium hydrogen phthalate (PHP), a hydrolysate of a PAE plasticizer. Detection conditions, such as pH values, drying times, and hydrolysate interference, were optimized. The working curve was well fitted with a linear parameter R2 of 0.9994, and the minimum detection limit was evaluated as 10-9 mol/L. Furthermore, the detection accuracy was supported by five edible oil samples. Therefore, using SERS technology to detect PHP is expected to provide an avenue for PAE plasticizer detection in oils and fats, and it features promising potential applications in food safety.


Asunto(s)
Nanopartículas del Metal , Ácidos Ftálicos , Humanos , Plastificantes/química , Espectrometría Raman/métodos , Aceites , Nanopartículas del Metal/química
14.
Nanomaterials (Basel) ; 13(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36678088

RESUMEN

Label-free surface-enhanced Raman scattering (SERS) analysis shows tremendous potential for the early diagnosis and screening of colon cancer, owing to the advantage of being noninvasive and sensitive. As a clinical diagnostic tool, however, the reproducibility of analytical methods is a priority. Herein, we successfully fabricated Ag NPs/cellulose nanocrystals/graphene oxide (Ag NPs/CNC/GO) nanocomposite film as a uniform SERS active substrate for label-free SERS analysis of clinical serum. The Ag NPs/CNC/GO suspensions by self-assembling GO into CNC solution through in-situ reduction method. Furthermore, we spin-coated the prepared suspensions on the bacterial cellulose membrane (BCM) to form Ag NPs/CNC/GO nanocomposite film. The nanofilm showed excellent sensitivity (LOD = 30 nM) and uniformity (RSD = 14.2%) for Nile Blue A detection. With a proof-of-concept demonstration for the label-free analysis of serum, the nanofilm combined with the principal component analysis-linear discriminant analysis (PCA-LDA) model can be effectively employed for colon cancer screening. The results showed that our model had an overall prediction accuracy of 84.1% for colon cancer (n = 28) and the normal (n = 28), and the specificity and sensitivity were 89.3% and 71.4%, respectively. This study indicated that label-free serum SERS analysis based on Ag NPs/CNC/GO nanocomposite film combined with machine learning holds promise for the early diagnosis of colon cancer.

15.
Anal Chim Acta ; 1227: 340302, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36089314

RESUMEN

Hyaluronidase expression is known to be upregulated in various pathological conditions. A method based on a combination of ratiometric surface-enhanced Raman scattering (SERS) and magnetic separation is described for the determination of hyaluronidase (HAase) activity. Gold nanospheres (AuNPs) functionalized by 4-mercaptophenylboronic acid (4-MPBA) form stable cyclic esters with diol on hyaluronic acid (HA) by the boronic acid group, while Fe3O4@DTNB@Au modified with mercaptoethylamine (MEA) was used as a capture substrate to bind to the carboxyl group on the surface of HA, forming the "Au@4-MPBA@HA/Fe3O4@DTNB@Au@MEA" "core-satellite" structure. When HAase is present, HA is enzymatically disrupted, resulting in the destruction of the "core-satellite" structure, the SERS signal of 4-MPBA is subsequently weakened. The gold shell in the substrate protects the 5,5'-Dithio bis-(2-nitrobenzoic acid) (DTNB) from the external environment, which makes it become an ideal internal standard (IS) molecule for subsequent calibration. Under optimal conditions, the I1075/I1324 varied in the range of 10-3 - 10 U‧mL-1 HAase activity, with a limit of detection (LOD) of 0.32 mU‧mL-1,below the level of HAase in normal human body fluids. This method has been successfully applied to the determination of HAase activity in urine and is expected to provide a new method in disease detection, especially in the non-invasive detection of bladder cancer.


Asunto(s)
Oro , Nanopartículas del Metal , Calibración , Ácido Ditionitrobenzoico , Oro/química , Humanos , Ácido Hialurónico , Hialuronoglucosaminidasa , Nanopartículas del Metal/química
16.
Colloids Surf B Biointerfaces ; 217: 112645, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35780613

RESUMEN

Tyrosinase (TYR) is a polyphenol oxidase that regulates melanin biosynthesis. Abnormal levels of TYR have been confirmed closely associated with melanoma cancer and other diseases, making the establishment of highly sensitive and accurate quantitative detection of TYR is thus essential for fundamental research and clinical applications. Herein, we proposed a new strategy that combines surface-enhanced Raman scattering (SERS) with Dopamine (DA) and Prussian blue (PB) functionalized gold-gold hybrid nanoparticles for TYR detection. DA is oxidized to dopaquinone with the presence of TYR, leading to the consumption of DA in the reaction solution and the corresponding decrease in DA characteristic peak intensity at 1480 cm-1. Our SERS quantitative assay of TYR with "on-off" sensing strategy yields an excellent limit of detection (LOD) of 3 × 10-3 U mL-1 in a linear range of 10-3 to 100 U mL-1. In particular, the intensity ratio of 1480 cm-1 to 2121 cm-1 allows us to achieve remarkably reliable quantitative detection of TYR, with the 2121 cm-1 peak intensity of the standard internal (IS) molecule PB being used to correct SERS signal fluctuations. Furthermore, our proposed assay has been successfully demonstrated to quantify TYR spiked in human serum samples, with excellent percentage recovery of 90.0-110.6 %. The potential of our ratiometric SERS strategy for the performance evaluation of TYR inhibitors has also been verified. Our work is therefore expected to provide a new route for accurate and reliable monitoring of TYR activity in the complex biological environment.


Asunto(s)
Oro , Nanopartículas del Metal , Dopamina/análisis , Ferrocianuros , Humanos , Monofenol Monooxigenasa , Espectrometría Raman
17.
Nanoscale ; 14(22): 8103-8111, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35612288

RESUMEN

MicroRNAs (miRNAs) are emerging as essential liquid biopsy markers for early cancer detection. Currently, the clinical applications of miRNAs are lagging behind due to their high sequence similarity and rarity. Herein, we propose biointerference-free, target-triggered core-satellite nanocomposites for ultrasensitive surface-enhanced Raman spectroscopy (SERS) detection of lung cancer-related miRNA-21. Through the hybridization-based recognition effect, we observe an enormous SERS signal enhancement caused by miRNA-21-triggered assembly of core-satellite nanocomposites. This enables the sensitive detection of miRNA-21 down to the 0.1 fM level in a linear range of 10 fM to 1 nM. The use of a biointerference-free reporter further allows quantitative and direct detection of miRNA-21 from complex plasma samples, without RNA pre-extraction. As a proof of principle, we measure the level of plasma miRNA-21 in 20 lung cancer patients and 10 healthy participants. Significantly higher levels of miRNA-21 are determined in lung cancer patients than in healthy participants, with clear lower expression in stage I (n = 10) than in stage III-IV (n = 10) lung cancer patients. We, therefore, believe that this proposed strategy will have high clinical potential for sensitive quantification of miRNA markers in liquid biopsy samples and act as a complementary method for the early detection of lung cancer.


Asunto(s)
Técnicas Biosensibles , Neoplasias Pulmonares , MicroARNs , Nanocompuestos , Detección Precoz del Cáncer , Humanos , Límite de Detección , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Espectrometría Raman
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121275, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35605417

RESUMEN

Tetrodotoxin (TTX) is one of the most lethal neurotoxins, so the reliable quantitative analysis of TTX is crucial for food and environmental safety monitoring. Herein, a novel dual-molecule calibration aptasensor was developed for detection of TTX based on Surface-enhanced Raman scattering (SERS). The adaptive surface has high affinity recognition sites for the target of interest, which ensures the high specificity and stability of the aptasensor. In addition, the uniquely labeled signal molecules located in the Raman silent region (1800-2400 cm-1) can avoid the interference of other exogenous biological signal molecules. Meanwhile, in quantitative analysis, the SERS signal generated by the reporter is calibrate in real time using the second-order peak of silicon molecule (Si). The detection linear range of the aptasensor was 0.0319 ng/mL-319.27 ng/mL, with a limit of detection (LOD) of 0.024 ng/mL and the excellent uniformity (RSD = 8.8%) for TTX detection. As a promising and versatile detection candidate, the ultra-sensitive quantitative detection aptasensor of TTX had important practical significance, which can offer more favorable persuasion for TTX analysis in real seafood samples.


Asunto(s)
Nanopartículas del Metal , Tetraodontiformes , Animales , Calibración , Oro , Límite de Detección , Espectrometría Raman , Tetrodotoxina
19.
RSC Adv ; 12(13): 8160-8171, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35424738

RESUMEN

Tetracycline (TC) is a broad-spectrum antibiotic. When humans consume too much food containing tetracycline residues, it can be a serious health hazard. Therefore, it is essential to develop a strategy to detect TC. In this study, we prepared light blue-green luminescent nitrogen-doped graphene quantum dots (N-GQDs) by a hydrothermal method using the natural products potato straight-chain starch and urea as precursors; the fluorescence quantum yield of the prepared N-GQDs was 5.2%. We investigated the detection of tetracycline (TC) by this N-GQD fluorescent sensor based on the internal filtration effect (IFE) of TC on N-GQDs. The reaction is green, simple and no other contaminating products are present. A good linear relationship was established between the relative fluorescence intensity ratio of the system and the logarithm of the TC concentration of 2.5 × 10-10 to 5 × 10-6 M (R 2 = 0.9930), with a detection limit of 9.735 × 10-13 M. The method has been used to analyze TC in three real food samples (whole milk, skim milk, honey) with low detection limits (3.750 × 10-11 to 2.075 × 10-9 M), wide linear range, and satisfactory recoveries of 93.80-109.20% were obtained. In conclusion, the proposed method is a green, rapid, highly sensitive and selective method for the detection of tetracycline in real food samples, demonstrating the potential application of N-GQDs in food detection.

20.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35159763

RESUMEN

In this work, we developed a new type of SERS probe, which was composed of glass-SiO2-Au@MBN@Ag nanoparticles (NPs) three-dimensional Surface-enhanced Raman spectroscopy (SERS) substrate. When the laser passed through the quartz glass sheet, on the one hand, the SiO2 NPs supporting the Au@MBN@Ag NPs increase the roughness of the substrate surface, resulting in a large number of hot spots among nanoparticles. On the other hand, based on the focusing effect of silicon dioxide nanospheres, the laser can better focus on the surface of nanoparticles in the inverted SERS probe, thus showing better SERS enhancement. Furthermore, the Au@MBN@Ag NPs core-shell structure was used with 4-mercaptobenzoonitrile (MBN) as an internal standard molecule, and the quantitative determination of tyrosine and urea was realized by internal standard correction method. The standard working curves of the two had good linear correlation with R2 above 0.9555. The detection limits of tyrosine and urea were in the range of 2.85 × 10-10 M~7.54 × 10-6 M, which confirms that this design can be used for quantitative and specific detection of biological molecules, demonstrating great practical significance for the research of diseases such as skin lesions and endocrine disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...